
Chapter 6  

Free Electron Fermi Gas 



Free electron model: 

• The valence electrons of the constituent atoms become conduction 

electrons and move about freely through the volume of the metal. 

• The simplest metals are the alkali metals– lithium, sodium, potassium, Na, 

cesium, and rubidium. 

• The classical theory had several conspicuous successes, notably, the 

derivation of the form of Ohm’s law and the relation between the electrical and 

thermal conductivity.  

• The classical theory fails to explain the heat capacity and the magnetic 

susceptibility of the conduction electrons.   M  =  B 

• Why the electrons in a metal can move so freely without much deflections? 

(a) A conduction electron is not deflected by ion cores arranged on a periodic 

lattice, because matter waves propagate freely in a periodic structure. 

(b) A conduction electron is scattered only infrequently by other conduction 

electrons. 

                                            Pauli exclusion principle.    

Free Electron Fermi Gas: a gas of free electrons subject to the Pauli Principle  



Valence electrons form the electron gas 

ELECTRON GAS MODEL IN METALS 
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Figure 1.1     (a) Schematic picture of an isolated atom (not to scale). (b) In a 

metal the nucleus and ion core retain their configuration in the free atom, but the 

valence electrons leave the atom to form the electron gas. 



Na : simple metal 

3.66A 0.98A 

Core ~ occupy about 15% in 

total volume of crystal 

In a sea of conduction of electrons 



                             Classical Theory (Drude Model) 
 
 
Drude Model, 1900AD,  after Thompson’s discovery of electrons in 1897  
 
- Based on the concept of kinetic theory of neutral dilute ideal gas 
 
- Apply to the dense electrons in metals by the free electron gas picture 
 

Success: 

(1)  The Ohm’s Law   

       the electrical conductivity 

       J =  E ,   = n e2  / m, 

(2)  The Weidmann Frantz Law 

       Ke / (e T) = L  ~ a  constant  

Failure: 

(1) Heat capacity  Cv~ 3/2 NKB 

The observed heat capacity is only  0.01,  

too small. 

(2) The observed thermal power Q  is also 

only ~ 0.01, as Q = - Cv /3ne 

(3) Magnetic susceptibility  is incorrect. for electrons,  

since K = 1/3 vF
2 Cv 

100 times; 0.01 times (TF /T) (T/TF) 
See Ashroft & Mermin, Ch. 1 

The number of electrons per unit volume with velocity in the range du about u 

Classical Statistical Mechanics: Maxwell Boltzmann Distribution 

 

fB(u) = n (m/ 2pkBT)3/2  exp(-mu2/2kBT) 



     We have shown that the one-dimensional energy distribution is 

   

 

 

 

     but would like to have a distribution for three dimensions. A basic probability idea 

is that for three independent events you take the product of the individual 

probabilities.  The three-dimensional probability distribution then takes the form: 

   

      

 

 

 

 

 

 

      It must be noted here that while this has the form of the Boltzmann 

distribution for kinetic energy, it does not take into account the fact that there are 

more ways to achieve a higher velocity. In making the step from this expression to 

the Maxwell speed distribution, this distribution function must be multiplied by the 

factor 4πv2  to account for the density of velocity states available to particles. 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c2


Maxwell Speed distribution as a sum over all directions  
     To put the three-dimensional energy distribution into the form of the Maxwell 

speed distribution, we need to sum over all directions. One way to visualize that 

sum is as the development of a spherical shell volume element in "velocity space". 

   

 

      The sum over the angular coordinates is just going to give the area of the 

sphere, and the radial element dv gives the thickness of the spherical shell. That 

takes the angular coordinates out of the distribution function and gives a one-

parameter distribution function in terms of the "radial" speed element dv.  

   

 

http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kintem.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kintem.html#c3


Thermal Electrical Effect:  (Seeback Effect)  
 
As a temperature gradient is applied to a long thin bar,  

it should be accompanied by an electrical field directed  

opposite to the temperature gradient 

E =  Q  T 

Q as the thermal power 

Q = E /  T 

    = - Cv  / (3ne) 

As in Drude model, Cv  and Q are  100  times too small ! 

See Ashcroft & Mermin, Ch. 1, 

p. 24-25 

E as the thermal electric field  



                                      Drude Model 

 
*** Basic approximations are: 

 

(1) Between collisions:  

      -- Neglect electron - ion core interaction --- Free electron approximation 

      -- Neglect electron - electron interaction --- Independent electron approximation 

 

(2)   During collisions: 

      -- Assuming electrons bouncing off the ion core 

      -- Assuming some form of scattering 

 

(3)  Relaxation time approximation: 

      -- Collision mean free time     
      -- Independent of electron position and velocity 

 

(4)  The collisions are assumed to maintain the thermal equilibrium 

 



 **Can still use the dilute, neutral gas, kinetic picture as in the classical case. 

     

** Justifications:  

 One can still describe the motion of an electron classically,  

If we can specify its positions and momentum as accurately as possible without 

violating the Heisenberg uncertainty principle. 

 

 One is able to specify the position of an electron on a scale small compared  

with a distance   over which the field or temperature varies.  

 

Free Electron Gas Model (Sommerfeld) : 
Quantum Statistical Mechanics:  

The Pauli exclusion principle requires that the replacement of 

Maxwell Boltzmann distribution with the Fermi Dirac distribution as 

 



Success: 

  Resolve the heat capacity anomaly  

  Give correct CV , thermal power, consistent with the experiments for 

simple metals 

  Good at low T,  room T, but not at medium T  for noble metals?  

transition metals? 

 

Approximations: 

  Neglect the effect of ions between collisions. 

  The role of ions as a source of collision is unspecified. 

  The contribution of ions to the physical phenomenon is not included. 

Free Electron Gas Model (Sommerfeld) : 

Ashroft & Mermin: Chapter 2 



Maxwell Botzmann distributuion 

Fermi Dirac Distribution 

X = mu2/2KBT 

fFD 
fMB 

X 

X 

(a) 

(b) 

fMB  v2 exp(-mv2/2KBT) 

fFD = [exp(x) + 1] -1  



     We have shown that the one-dimensional energy distribution is 
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Maxwell Speed distribution as a sum over all directions  
     To put the three-dimensional energy distribution into the form of the Maxwell 

speed distribution, we need to sum over all directions. One way to visualize that 
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1. 

2. 

3. 

4. 

Chemical Potential  u  is a function of T,  and u  is such that   D(e)f(e) de  = N 

u  = 𝝐  at  T      0 

Ground State : at absolute zero temperature, how about for T > 0 ? 

For  𝝐 < m , f(𝝐) = 1;   for 𝝐 > m , f(𝝐) = 0 



for  𝜖= u 

Fermi Dirac Distribution Function                                                         (5) 

0.5 



T = 0 

T > 0 



Free Electron Gas in One Dimension 

Standing wave solution 

  

Quantum Theory and Pauli Principle 

Electron of mass M, in a 1-D line of length L confined to an infinite barrier 

K = np / L 

Fixed boundary conditions 

N (n/2) = L 



Fermi wavevector kF 

Fermi Temperature TF 

nF = N/2 



or  N (n/2) = L 

n =1 

n = 2 

n = 3 

K 

So   n = 2 L/N 

p2 

k = n p / L 

Standing wave solution 



(1) For electrons confined to a cubic of edge L, standing wave solution 

(2) Periodic boundary conditions 

Exp (ikL) = 1 

k = ± n 2p / L 

     FREE ELECTRON GAS IN THREE DIMENSIONS 

Wave functions satisfying the free particle Schrödinger equation and the 

periodicity condition are of the form of a traveling plane wave: 

k = n p / L 



At the surface  𝝐f , Kf 
Fermi Sphere 

Fermi Surface  

at the Fermi surface  𝝐F,  kf 

Linear momentum operator 



  

𝝐F , VF , kF , TF See Table 1 

  



From eq. 17 

in 3-D 

f(𝝐,T) D(𝝐) 

At  T = 0,  D(𝜖) ~𝜖1/2  
ln N = 

𝟑

𝟐
 In 𝝐  + constant ;   

𝒅𝑵

𝑵
 =  

𝟑

𝟐
 ．

𝒅𝝐

𝝐
    



Heat Capacity of the Electron Gas 

Classical theory,  Cv = 3/2 NKB    for electrons 

T > 0 

T = 0 

N ~ N (T/TF) , U ~ N (T/TF) KBT 

T/TF ~ 0.01 

X 2 



• The name "equipartition" means "equal division,"  

• The original concept of equipartition was that the total kinetic energy of a system 

is shared equally among all of its independent parts, on the average, once the 

system has reached thermal equilibrium. Equipartition also makes quantitative 

predictions for these energies.  

• For example, it predicts that every atom of a noble gas, in thermal equilibrium at 

temperature T, has an average translational kinetic energy of (3/2)kBT, where kB 

is the Boltzmann constant. As a consequence, since kinetic energy is equal to 

1/2(mass)(velocity)2, the heavier atoms of xenon have a lower average speed 

than do the lighter atoms of helium at the same temperature.  

• In this example, the key point is that the kinetic energy is quadratic in the velocity.  

    The equipartition theorem shows that in thermal equilibrium, any degree of 

freedom (such as a component of the position or velocity of a particle), which 

appears only quadratically in the energy, has an average energy of 1⁄2 kBT and 

therefore contributes 1⁄2 kB to the system's heat capacity. 

• It follows that the heat capacity of the gas is (3/2)N kB and hence, in particular, 

the heat capacity of a mole of such gas particles is (3/2)NAkB. 

The equipartition theorem  

https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Noble_gas
https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/Xenon
https://en.wikipedia.org/wiki/Helium
https://en.wikipedia.org/wiki/Degrees_of_freedom_(physics_and_chemistry)
https://en.wikipedia.org/wiki/Degrees_of_freedom_(physics_and_chemistry)
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Mole_(unit)


If the electrons obeyed classical Maxwell-Boltzmann statistics,  

 

 

 

 

so that for all electrons, then the equipartition theorem would give 

E =  3/2 N KBT 

 

Cv =  3/2 N KB 



The total energy increase for heating   to  T        from T =  0  

Since at T = 0, f(𝝐) =1  

for 𝝐 <  𝝐F 

𝝐 < 𝝐F 

Since only f(𝝐) is temperature dependent 

From (26) to (27), 

see derivation  

next page 



Eq. (24) May be rewritten as 

From Eq. (26) there two items are equal. 



U / N𝝐F 

kBT/ 𝝐F 

3-D 



3-D 



kT /𝜖F 

• m  is determined by satisfying  

   D(𝜖) f(𝜖) d𝜖 = N 

•  At very low T,  lim m = 𝜖F 

•  For the 3-D case, see  Ashcroft 
& Mermin, P. 45-47 

    m = 𝜖F [ 1-1/3 (p kBT/ 2𝜖F)2] 

•  For the 2-D case, see Kittel 
problem 6.3 

1-D 

3-D 



at very low T,  lim  m = 𝜖F 

𝜖F /  >> 1 

From Fig. 3, 

; 

Judging from Figs. 7 and 8, the variation of m with T,   



𝜸 = 
𝟏

𝟐
 𝝅𝟐NkBT/TF     Since   𝝐F  ∝ TF ∝ 1/m       ∴ 𝛾 ∝ m         

where  𝝐F = kBTF 

At low T, the electronic term dominates 

K metal 

Compare with CV = 2NkBT/TF 

(See Eq. 17) 



Express the ratio of the observed to the free electron values of the electronic 

heat capacity as a ratio of a  thermal effective mass mth to the electron mass m, 

where mth is defined 

(tight binding model) 

See Table 2 

The departure from unity involves three separate effects: 

A:  The interaction of the conduction electrons with the periodic potential of the   

rigid crystal lattice band effective mass. 

B:  The interaction of the conduction electrons with phonons. 

C:  The interaction of the conduction electrons with themselves. 



In an electrical field E , magnetic field B, the force F on an electron ,  

the Newton second law of motion becomes 

 First considering  B = 0, in zero magnetic field  

q = -e 

ELECTRICAL CONDUCTIVITY AND OHM’S LAW 

If the field is applied at time t then at a later time t the sphere will be displaced 

to a new center at 



At the ground state 

The displacement of Fermi sphere 

under force F 



Resistivity 

Conductivity Ohm’s Law 

q = -e 

See Table 3  

ħ 



Imperfections 

Lattice phonons 

Matthiessen’s Rule.  

To a good approximation the 

rates are often independent.  

 And can be summed together 

Since  r ~ 1/ 



Resistivity Ratio  =  r (300K)/ ri(0) 

rL (T) 

ri (0) 



Nph   T 

Different ri (0) ,  but the same  rL 

Potassium metal 

At T >   

r    T 

 

r    T 



Umklapp Scattering 

Bloch’s  T5  Law 

Normal process 

Umklapp process 

where  qo, u   are related to the geometry of  

the Fermi surface 

Umklapp scattering of electrons by phonons (Chapter 5) accounts for most of 

the electrical resistivity of metals at low temperatures. These are electron-

phonon scattering processes in which a reciprocal lattice vector G is involved, 

the normal electron-phonon collision k’ = k + q. 

This scattering is an umklapp process, k’ = k + q + G 

 qo: the minimum phonon wavevector for Umklapp process 

At low enough temperatures the number of phonons available for umklapp 

scattering falls as exp (－ U /T), 

     

Bloch obtained an analytic result for the dominating “normal scattering”, with 

𝝆𝑳 ∝ 𝑻𝟓/𝜽𝟔  at very low temperatures.  



The electrical resistivity of most materials changes with temperature.  

If the temperature T does not vary too much, a linear approximation is typically used: 

  

                                 

 

The temperature dependence of resistivity:  

Metals 

In general, electrical resistivity of metals increases with temperature. Electron–phonon 

interactions can play a key role. At high temperatures, the resistance of a metal increases 

linearly with temperature. As the temperature of a metal is reduced, the temperature 

dependence of resistivity follows a power law function of temperature.  

Mathematically the temperature dependence of the resistivity ρ of a metal is given by the 

Bloch–Grüneisen formula: 

A is a constant that depends on the velocity of electrons at the Fermi surface, the Debye 

radius and the number density of electrons in the metal. R is the Debye temperature as 

obtained from resistivity measurements and matches very closely with the values of Debye 

temperature obtained from specific heat measurements.  

n is an integer that depends upon the nature of interaction. 

1. n=5  implies that the resistance is due to scattering of electrons by phonons, 

(simple metals).   

2. n=3  implies that the resistance is due to s-d electron scattering,  (as is the case for 

transition metals).  

3. n=2  implies that the resistance is due to electron–electron interaction. 

https://en.wikipedia.org/wiki/Linear_approximation
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Phonon


    The free particle acceleration term is (ℏ𝑑/𝑑𝑡) 𝛿k and the effect of collisions 

(the friction) is represented by ℏ𝛿k/𝜏 , where 𝜏 is the collision time. 

The equation of motion is  

MOTION IN MAGNETIC FIELDS 

B is along the z axis 



Hall Effect 

     The Hall field is the electric field developed across two faces of a conductor,  

in the direction of   j x B. 

     If current cannot flow out of the rod in the y direction we must have 𝛿Vy = 0 

and Vy = 0, transverse electric field                                                           (53) 

jx, Ex 

BZ 

Ey 

assume all relaxation   for both thermal 

and electrical conduction are equal. 

Hall resistance 

𝝆𝑯 = BRH = Ey / jx                                                                             (55a) 



When the transverse field Ey  

(Hall field) balances the Lorentz force 

neEy = - ejxB/c 

 

RH = Ey/jx B 

      =  -1/nec 



by the energy band theory. 

   See RH  listed in Table 4 

Al, In  are in disagreements with the prediction, 

with 1 positive hole, not 3 negative electrons 



Thermal conductivity of Metals 

From eq. (36) for  CV  in  K,  and   𝝐F = 1/2 mvF
2 

                                                                                     It does not involve  ,   
if the relaxation times are identical for electrical and thermal processes. 

CV = 1/2p2NkBT/TF 

See Table 5 for L 



Home work, Chapter 6 

  No.1 

  No.3 

  No.6 


