Chapter 6

Free Electron Fermi Gas




Free electron model:

* The valence electrons of the constituent atoms become conduction
electrons and move about freely through the volume of the metal.

* The simplest metals are the alkali metals— lithium, sodium, potassium, Na,
cesium, and rubidium.

* The classical theory had several conspicuous successes, notably, the
derivation of the form of Ohm’s law and the relation between the electrical and
thermal conductivity.

* The classical theory fails to explain the heat capacity and the magnetic
susceptibility of the conduction electrons. M =y B

* Why the electrons in a metal can move so freely without much deflections?

(a) A conduction electron is not deflected by ion cores arranged on a periodic
lattice, because matter waves propagate freely in a periodic structure.

(b) A conduction electron is scattered only infrequently by other conduction
electrons.

Pauli exclusion principle.

Free Electron Fermi Gas:|a gas of free electrons subject to the Pauli Principle




" Al £ ECTRON GAS MODEL IN METALS

Valence electrons form the electron gas
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Figure 1.1  (a) Schematic picture of an isolated atom (not to scale). (b) In a
metal the nucleus and ion core retain their configuration in the free atom, but the
valence electrons leave the atom to form the electron gas.




Na : simple metal

Core ~ occupy about 15% in
total volume of crystal

Figure 1 Schematic model of a crystal of sodium metal. The atomic cores are Na™ ions: they are
immersed in a sea of conduction electrons. The conduction electrons are derived from the 3s
valence electrons of the free atoms. The atomic cores contain 10 electrons in the configuration
15%25%2p®. In an alkali metal the atomic cores occupy a relatively small part (~15 percent) of the
total volume of the crystal, but in a noble metal (Cu, Ag, Au) the atomic cores are relatively larger

and may be in contact with each other. The common crystal structure at room temperature is
bee for the alkali metals and fcc for the noble metals.
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C‘assmal Theory (Drude Model)

Drude Model, 1900AD, after Thompson’s discovery of electrons in 1897

- Based on the concept of kinetic theory of neutral dilute ideal gas
- Apply to the dense electrons in metals by the free electron gas picture

Classical Statistical Mechanics: Maxwell Boltzmann Distribution
The number of electrons per unit volume with velocity in the range dv about v

fg(v) = n (M/ 22k;T)32 exp(-muv?/2k,T)

sSuccess:

(1) The Ohm’s Law

for electrons,

the electrical conductivity
J=cE, o=ne?r/m,

(2) The Weidmann Frantz Law
Ke/ (o, T)=L ~a constant

since K =1/3v2C, 7

/

Failure:

(1) Heat capacity C,~ 3/2 NKg

The observed heat capacity is only 0.01,
too small.

(2) The observed thermal power Q is also
only ~0.01,as Q=-C,/3ne
(3) Magnetic susceptibility y is incorrect.

e

y

See Ashroft & Mermin, Ch. 1

(TF IT) —100 times:; 0.01 times‘—(T/TF)
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We have shown that the one-dimensional energy distribution is
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but would like to have a distribution for three dimensions. A basic probability idea
Is that for three independent events you take the product of the individual
probabilities. The three-dimensional probability distribution then takes the form:
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It must be noted here that while this has the form of the Boltzmann
distribution for kinetic energy, it does not take into account the fact that there are
more ways to achieve a higher velocity. In making the step from this expression to
the Maxwell speed distribution, this distribution function must be multiplied by the
factor 4mrv? to account for the density of velocity states available to particles.


http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c2

" A
Maxwell Speed distribution as a sum over all directions
To put the three-dimensional energy distribution into the form of the Maxwell

speed distribution, we need to sum over all directions. One way to visualize that
sum is as the development of a spherical shell volume element in "velocity space".

Zl.

dVolume = dv, dv, dv,

Within & spherical shell of radius v,
a radial el@ment can ba formed

............

The sum over the angular coordinates is just going to give the area of the
sphere, and the radial element dv gives the thickness of the spherical shell. That
takes the angular coordinates out of the distribution function and gives a one-
parameter distribution function in terms of the "radial" speed element dv.

Spherical shall Fesulting distribution in terms of
“volume" element the molecular speed v:

in velocity space 1
Anv? dv f(pj — m } P —mv { 24T
2mkT



http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/maxspe.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kintem.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kintem.html#c3

Thermal Electrical Effect: (Seeback Effect)

As a temperature gradient is applied to a long thin bar,
it should be accompanied by an electrical field directed
opposite to the temperature gradient

E=-QVT
E as the thermal electric field Q as the thermal power
Q=E/VT See Ashcroft & Mermin, Ch. 1,
=-C, /(3ne) p. 24-25

/

As in Drude model, C, and Q are 100 times too small !



" A
Drude Model

*** Basic approximations are:

(1) Between collisions:
-- Neglect electron - ion core interaction --- Free electron approximation
-- Neglect electron - electron interaction --- Independent electron approximation

(2) During collisions:
-- Assuming electrons bouncing off the ion core
-- Assuming some form of scattering

(3) Relaxation time approximation:
-- Collision mean free time 7
-- Independent of electron position and velocity

(4) The collisions are assumed to maintain the thermal equilibrium



Free Electron Gas Model (Sommerfeld) :

Quantum Statistical Mechanics:

The Pauli exclusion principle requires that the replacement of
Maxwell Boltzmann distribution with the Fermi Dirac distribution as

_ 1
fle)= expl(e — u)/kgT] +1 (5)

**Can still use the dilute, neutral gas, kinetic picture as in the classical case.

** Justifications:

» One can still describe the motion of an electron classically,

If we can specify its positions and momentum as accurately as possible without
violating the Heisenberg uncertainty principle.

» One is able to specify the position of an electron on a scale small compared
with a distance A over which the field or temperature varies.



" J
Free Electron Gas Model (Sommerfeld) :

Success:

» Resolve the heat capacity anomaly

= Give correct C,, , thermal power, consistent with the experiments for
simple metals

» Good at low T, room T, but not at medium T for noble metals?
transition metals?

Approximations:
» Neglect the effect of ions between collisions.

» The role of ions as a source of collision is unspecified.
= The contribution of ions to the physical phenomenon is not included.

Ashroft & Mermin: Chapter 2
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Figure 2.1 (a) The Maxwell-Boltzmann and Fermi-Dirac distributions for typical metallic densities
at room temperature. (Both curves are for the density given by 7= 0.017),.) The scale
is the same for both distributions, and has been normalized so that the Fermi-Dirac
distribution approaches 1 at low energies. Below room temperature the differences between
the two distributions are even more marked. (b) A view of that part of (a) between x = 0
and x = 10. The x-axis has been stretched by about a factor of 10, and the f-axis has been
compressed by about 500 to get all of the Maxwell-Boltzmann distribution in the figure.
On this scale the graph of the Fermi-Dirac distribution is indistinguishable from the x-axis.
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EFFECT OF TEMPERATURE ON THE FERMI-DIRAC DISTRIBUTION

Ground State : at absolute zero temperature, how about for T>0 ?

Fermi-Dirac distribution|gives the probability that an orbital at energy e

will be occupied in an ideal electron gas in thermal equilibrium:

_ 1
Hle)= expl(e — wV/ksT] +1 ° (5)

Chemical Potential « is a function of T, and « is such that /D(&)f(¢) de =N

«=€at T—0 For e<u,fle)=1; fore>u,f(e) =0

At absolute zero p = €z, because in the limit T — 0 the function f(€) changes
discontinuously from the value 1 (filled) to the value 0 (empty) at € = €; = p.

. At all temperatures f(€) is equal to 5 when € = u, for then the denominator

of (5) has the value 2.

. The quantity w is the chemical potential (TP, Chapter 5), and we see

that at absolute zero the chemical potential is equal to the Fermi energy.

. which € — u > kgT; so that fle) = exp[(n — €)/kgT].

This limit is called the Boltzmann or Maxwell distribution.
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fle) = 1

Fermi Dirac Distribution Function expl(e — w)/kgT] +1 ° (5)
1.2
1.0 fr———
X om0 p~_| 500K
0.8 AN
TR \
2.5)\
07 ~_ \
f(e) 0.6 e
0.5 ——-——-———%7, -
04%? S
for € e \
O 0k 1ok X ——
% 1 2 3 4 5 6 7 8 9
€/kg, in units of 10* K

Figure 3 Fermi-Dirac distribution function (5) at the various labelled temperatures, for
Ty = €p/kp = 50,000 K. The results apply to a gas in three dimensions. The total number of parti-
cles is constant, independent of temperature. The chemical potential u at each temperature may

be read off the graph as the energy at which f = 0.5.
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Figure 2.3

The Fermi function, f(8) =
1/[#®~® + 1] versus & for
given u, at (a) T =0 and
(b) T ~ 0.01u (of order room
temperature, at typical me-
tallic densities). The two
curves differ only in a region
of order kzT about u.



R S Frce Electron Gas in One Dimension

Quantum Theory and Pauli Principle
Electron of mass M, in a 1-D line of length L confined to an infinite barrier
The wavefunction i, (x) of the electron is a solu-
tion of the Schrédinger equation ¥y = e; with the neglect of potential energy
we have ¥ = p*/2m, where p is the momentum. In quantum theory p may be
represented by the operator —if d/dx, so that

2 d*y,
Ll e, )

the term orbital|to denote a solution of the wave equation for a

Hip, =

system of only one electron.

The boundary conditions are ,,(0) = 0; ¢,(L) = 0, as imposed by the infi-
nite potential energy barriers.

Fixed boundary conditions Standing wave solution

¢n=ASm(§—Wx>; N (4,/2) =L L(/\—>="’” K=nz/L

2
¢,n=Asinnf7Tx Cil‘l;n =A(nf7r') 8 (n%x) : CS‘//; = —A (nf’”) sin(%x) ’
i

. = 1 (nm)
" 2m\L /]




" J
the Pauli exclusion principle, no two electrons can have all their
quantum numbers identical.

In a linear solid the quantum numbers of a conduction electron orbital are
n and m,, where n is any positive integer and the magnetic quantum number

1 . . . .
s = T3, according to spin orientation.

Electron Electron
n my occupancy n my occupancy
1 T 1 3 1 1
1 l 1 3 & 1
2 T 1 4 T 0
2 l 1 4 l 0
degeneracy.

Let np denote the topmost filled energy level,

The condition 2n; = N determines ng| the value of n for the uppermost filled level.

Ng = N/2

Fermi energy €;

2 [(npm\? 2 -
Fermi wavevector k. €r =2ﬁ ( 2 ) = %(%) :
Fermi Temperature T L o
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or N (4,/2) =L
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Figure 2 First three energy levels and wave-
functions of a free electron of mass m confined ..

to a line of length L. The energy levels are la-
beled according to the quantum number n
which gives the number of half-wavelengths in
the wavefunction. The wavelengths are indi-
cated on the wavefunctions. The energy €, of

the level of quantum number n is equal to
(h*2m)(n/2L)%. T2

! B2

Energy in units

2m

Standing wave solution

———Energy levels

Wavefunctions,
relative scale

(o8]

Quantum number, n



B 2 FREEELECTRON GAS IN THREE DIMENSIONS

By L T
om (ax2 T P e )*l’k(r) = € () . (6)
(1) For electrons confined to a cubic of edge L, standing wave solution |k =n z/L
,(r) = A sin (7nx/L) sin (mny/L) sin (mn.z/L) , (7)
(2) Periodic boundary conditions
Ylx + L,y,z) = ¢lx,y,2) , (8)
Wave functions satisfying the free particle Schrodinger equation and the
periodicity condition are of the form of a traveling plane wave:
(r)=exp (ik-r) , |[— Exp(ikL)=1 (9)
k=4n2r/L
k.,=0 ; L2m 4w (10)

—"La—'L;"'a

and similarly for k, and k,. Any component of k of the form 2nm/L

explik,(x + L)] = exp[i2nm(x + L)/L]

= exp(i2nmx/L) exp(i2nm) = exp(i2nmx/L) = exp(ik.x) .

(11)




Fermi Sphere

. At the surface €, K
Fermi Surface U

.

Figure 4 In the ground state of a system of N free
electrons the occupied orbitals of the system fill a
sphere of radius kg, where €5 = #i%3/2m is the energy of

Fermi surface,
at energy

€r

an electron having a wavevector kj. k,
a=t k=t gerrziie . (12
k
the operator p = —ihV, Linear momentum operator
P(r) = =ik Vi (r) = Aikia(r) , (13)

so that the plane wave iy is an eigenfunction of the linear momentum with the
eigenvalue 7k.

In the ground state of a system of N free electrons, the occupied orbitals
may be represented as points inside a sphere in k space.

ﬁ2 k2

€p = at the Fermi surface €, k; (14)



= _
there is one allowed wavevector—that is, one distinct

triplet of quantum numbers k,, k,, k.—for the volume element (271/L)* of
k space. Thus in the sphere of volume 47k}/3 the total number of orbitals is

amky/3 v
- k=N
@@mm?’ 32 7 (15)

where the factor 2 on the left comes from the two allowed values of m; ,
the spin quantum number,

kp= (3772_1\7)1’3 : (16)

v

e =om\ V (17)

173
N

€ ,Ve, ke, T, == |See Table1l

_# (BwiN)% |




B the number of orbitals per unit energy range, D(e), called the density of states.
I g

32
From eq. 17 N = v 2;;6 : (19)
37
_dN _ V. [(2m\* | e
D(e)_de—zwz <ﬁ2) e’ |

de
€  pe| @&T =0 De)~e'? in3-D

e

3 dN 3
INnN==Ine +constant, —= — -
2 N 2

De)=—=—. (21)

Figure 5 Density of single-particle states as a func-
tion of energy, for a free electron gas in three dimen-
sions. The dashed curve represents the density
f (e, T)D(e) of filled orbitals at a finite temperature,
but such that k5T is small in comparison with €. The
shaded area represents the filled orbitals at absolute
zero. The average energy is increased when the tem-
perature is increased from 0 to T, for electrons are , »
thermally excited from region 1 to region 2. €F

Energy, € ——~

Ve f(e,7) D(e)

Density of orbitals, relative scale

N




"™ .8 Heat Capacity of the Electron Gas

Classical theory, C,=3/2 NKg for electrons
But the observed electronic contribution at room temperature is usually
less than 0.01 of this value.

The question was answered only upon the discovery of the Pauli
exclusion principle and the Fermi distribution function.

1, ‘F=:6) Figure 2.3
1.0 The Fermi function, f(8) =
1/[e#€~® + 1] versus & for

;’S given u, at (@) 7T =0 and
H (b) T =~ 0.01u (of order room
(a) temperature, at typical me-
L tallic densities). The two
1.0 T ,> 0 curves differ only in a region
b V% of order kg T about u.
7 ¢
u
®  Ag~ry AN~ N (T/T), AU~ N (TT9) KgT
electronic heat capacity C, = dU/dT =~ Nky(T/TF) X 2 (23)

At room temperature C,; is smaller than the classical value 5Nkg by a factor
of the order of 0.01 or less, for Tr ~5 X 10*K. == T/T-~0.01



" A
The equipartition theorem

« The name "equipartition" means "equal division,"

« The original concept of equipartition was that the total kinetic energy of a system
Is shared equally among all of its independent parts, on the average, once the
system has reached thermal equilibrium. Equipartition also makes guantitative
predictions for these energies.

« For example, it predicts that every atom of a noble gas, in thermal equilibrium at
temperature T, has an average translational kinetic energy of (3/2)kgT, where kg
IS the Boltzmann constant. As a consequence, since kinetic energy is equal to
1/2(mass)(velocity)?, the heavier atoms of xenon have a lower average speed
than do the lighter atoms of helium at the same temperature.

* In this example, the key point is that the kinetic energy is quadratic in the velocity.

The equipartition theorem shows that in thermal equilibrium, any degree of
freedom (such as a component of the position or velocity of a particle), which

appears only quadratically in the energy, has an average energy of %, ksT and
therefore contributes ¥, kg to the system's heat capacity.

« It follows that the heat capacity of the gas is (3/2)N kg and hence, in particular,
the heat capacity of a mole of such gas particles is (3/2)N, kg



https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Noble_gas
https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/Xenon
https://en.wikipedia.org/wiki/Helium
https://en.wikipedia.org/wiki/Degrees_of_freedom_(physics_and_chemistry)
https://en.wikipedia.org/wiki/Degrees_of_freedom_(physics_and_chemistry)
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Mole_(unit)

If the electrons obeyed classical Maxwell-Boltzmann statistics,
F o< exp(—fe)

so that for all electrons, then the equipartition theorem would give

E= 3/2NKgT

C,= 3/2NKg
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The total energy increase for heating t

AU=U(T) — U(0) AU= f de €D

A‘O

We multiply the identity

T fromT=0

D(e) f(e) —

e ¥
de eD(e) . (24)

v\Since at T =0, f(e) =1
/ for € < e

0

N= f de D(e f de D (25)
0
by € to obtain
From (26) to (27), ( f " 4 J ) de €; f(€)D(e) = f y de ezD(€) . (26)
see derivation 0 €5 0
next page
AU = j de(e — &) fle)D(e) de —ol-feDle) . (2T)

' 1

1

The first integral on the right-hand side of
(27) gives the energy needed to take electrons
from €y to the orbitals of energy € > ¢,

The second integral gives the energy
needed to bring the electrons to €
from orbitals below €;. €< €.

—U_ [ — e
Cel—dT_ 0 de(G EF)dT

D(e) . (28)

Since only f(€) is temperature dependent




] AU = J: de eD(e) f(e) — fep de €D(e) . (24)
( fo 'E + :o) de exf(€)D(e) = JO - de €zD(€) (26)

From Eqg. (26) there two items are equal.

- f " de eD(e) fle) — de exD(©) fle

+ feFde €D(e) f(e) — de € D(e) — de €xD(e) f(€) + de €pD(e)
<0

= | dele— enf@D(e) + | detes — o1 ~ fleID(e) . 2T
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Figure 6 Temperature dependence of the
energy of a noninteracting fermion gas in three
dimensions. The energy is plotted in normal-
ized form as AU/Neg, where N is the number of
electrons. The temperature is plotted as kzT/ep.
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Figure 7 Plot of the chemical potential u versus temperature as kT for a gas of noninteracting
fermions in three dimensions. For convenience in plotting, the units of u and k5T are 0.763€.
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One dimension

& Mermin, P. 45-47
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Figure 8 Variation with temperature of the chemical
potential u, for free electron Fermi gases in one and
three dimensions. In common metals 7/€; = 0.01 at
room temperature, so that u is closely equal to €.
These curves were calculated from series expansions
of the integral for the number of particles in the system.

1 Is determined by satisfying

« Atverylow T, Iim u=e¢
* For the 3-D case, see Ashcroft

e For the 2-D case, see Kittel
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From Fig. 3,
(e — €p) df/dT has large positive peaks at energies near €. It is a

good approximation to evaluate the density of states D(e) at € and take it
outside of the integral ; when kzT < € we ignore the temperature

dependence of the chemical potential u in the Fermi-Dirac distribution func-
tion and replace u by the constant €. with 7 = kT,

Judging from Figs. 7 and 8, the variation of p with T, atvery low T, bt M= €EE

df B8 expl(€ — €p)/7]
dr ™ {expl(e — ep)/r] + 1

(30)

x = (€ — €p)/T , (31)

— 1.2
el k [‘f—e,/'r e + ].) (32)

We may safely replace the lower limit by —o because | e-/7 >> 1

ood 2 e’ =7T2
f_m X% G+ 3 (33)




O J heat capacity of an electron gas is

Ca =357 D(€pk5T . (34)
D(e;) = 3N/2es = 3N/2k, T (35)
C, =3mNkgT/Tp .| Compare with C, = 2NkgT/Tx  (36)
Ty is called the Fermi temperature, where €- = kgTg
3.0
v [ . CIT = 2.08 + 257 T2 ././‘
= = otassium o
€ I e
= 2.5 /0./.
E 8 "’..0
‘% E ¥ i K metal Figure 9 Experimental heat capacity values
& B ¢ for potassium, plotted as C/T versus T°.
S - | | (After W, H. Lien and N. E. Phillips.)
0 0.1 T2 in K2 02 0.3
1 .
==-1m?NkgT/Tg  Since € « Tg o« 1/m S.yo«m | (See Eq. 17
2 F Y q

At temperatures much below both the Debye temperature 6 and the

Fermi temperature T, the heat capacity of metals may be written as the sum
of electron and phonon contributions: C = yT + AT®,

CIT =y+AT" , (37)
y, called the Sommerfeld parameter. At low T, the electronic term dominates




"
Express the ratio of the observed to the free electron values of the electronic

heat capacity as a ratio of a thermal effective mass m, to the electron mass m,
where my, is defined

my,  y(observed)

= ; 38
= ) (38)  See Table 2

The departure from unity involves three separate effects:

( A: The interaction of the conduction electrons with the periodic potential of the
rigid crystal lattice band effective mass.

B: The interaction of the conduction electrons with phonons.

C: The interaction of the conduction electrons with themselves.
\

Heavy Fermions.

The heavy fermion compounds include UBe;;, CeAl;, and CeCu,Si,.
f electrons in these compounds may have inertial masses as high as 1000 m,

because of the weak overlap of wavefunctions of f electrons on neighboring ions.

(tight binding model)



ELECTRICAL CONDUCTIVITY AND OHM’S LAW

In an electrical field E , magnetic field B, the force F on an electron,

the Newton second law of motion becomes q=-e
dv dk 1
C =m =% = "¢ E+-vXB]|.
(CGS) F=m - h % e(E =¥ B) (39)

In the absence of collisions the Fermi sphere (Fig. 10) moves in k space at a
uniform rate by a constant applied electric field.

First considering B =0, in zero magnetic field
k(t) — k(0) = —eEt/h . (40)

If the field is applied at time t then at a later time t the sphere will be displaced
to a new center at

ok = —ceEt/h . (41)



O
l_ The displacement of Fermi sphere

At the ground state under force F
Fermi sphere F 3 Fermi sphere
at timet = y

‘h

(a) (b)
Figure 10 (a) The Fermi sphere encloses the occupied electron orbitals in k space in the ground
state of the electron gas. The net momentum is zero, because for every orbital k there is an occu-
pied orbital at —k. (b) Under the influence of a constant force F acting for a time interval ¢ every
orbital has its k vector increased by 6k = Ft/A. This is equivalent to a displacement of the whole
Fermi sphere by 8k. The total momentum is Nk, if there are N electrons present. The applica-
tion of the force increases the energy of the system by N(A8k)*/2m.
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[ If the collision time is 7, the displacement of the Fermi sphere in the
steady state is given by (41) with t = 7. The incremental velocity is v =mk/m =
—eE1/m. _

q=-e
j=nqgv = ne*tE/m . (42)

electrical conductivity o is defined by j = oE, so that

Conductivity o= Ohm’s Law (43)

electrical resistivity p is defined as the reciprocal of the conductivity,

Resistivity p=m/mne’t . See Table3  (44)

7~ 2 X 107° s at 4 K. The mean free path € of a conduction electron
is defined as £ = w1 , (47)

v is the velocity at the Fermi surface,

we have vy = 1.57 X 10° cm s™! for Cu

€4K)=03cm; €(3000K)=~3 X 10"%cm.



Experimental Electrical Resistivity of Metals

The electrical resistivity of most metals is dominated at room temperature
(300 K) by collisions of the conduction electrons with lattice phonons and at
liquid helium temperature (4 K) by collisions with impurity atoms and me-
chanical imperfections in the lattice (Fig. 11).

Lattice phonons To a good approximation the
J Imperfections rates are often independent.
4 __ l P And can be summed together

TTn T / (45)

where 7;, and 7; are the collision times for scattering by phonons and by imper-
fections, respectively.

The net resistivity is given by

p=pLtp, Since p~ 1/t (46)

Often p; is independent of the number of defects

when their concentration is small, and often p; is independent of temperature.

This empirical observation expresses Matthiessen’s Rule.



I
The residual resistivity, p;(0), is the extrapolated resistivity at 0 K because

p;, vanishes as T — 0. The lattice resistivity, p,(T) = p — p;(0), is the same for
different specimens of a metal, even though p;(0) may itself vary widely.

o (0)

o (T)

(a)

Figure 11 Electrical resistivity in most metals arjfes from collisiony of electrons with irregulari-
ties in the lattice, as in (a) by phonons and in (b) by impurities and vacant lattice sites.

Resistivity Ratio = p (300K)/ p(0)

resistivity ratio of a specimen is usually defined as the ratio of its resistivity at
room temperature to its residual resistivity. It is a convenient approximate in-
dicator of sample purity.
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Figure 12 Resistance of potassium be
20 K, as measured on two specimens by
D. MacDonald and K. Mendelssohn. The
different intercepts at 0 K are attributed to
different concentrations of impurities and
static imperfections in the two specimens.
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The temperature-dependent part of the electrical resistivity is proportional
to the rate at which an electron collides with thermal phonons.

One simple limit is at temperatures over the Debye temperature 6:
here the phonon concentration is proportional to the temperature T, so

that p o< T for T > 6. Nop o T

po T
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Umklapp Scattering

Umklapp scattering of electrons by phonons (Chapter 5) accounts for most of
the electrical resistivity of metals at low temperatures. These are electron-
phonon scattering processes in which a reciprocal lattice vector G is involved,
the normal electron-phonon collision k> =k + q. Normal process

This scattering is an umklapp process, kK’ =k +q+G  Umklapp process
d,: the minimum phonon wavevector for Umklapp process

At low enough temperatures the number of phonons available for umklapp
scattering falls as exp (— &, /T), 8 G .

where q,, 6, are related to the geometry of
the Fermi surface

|
I
I
|
|
|

Figure 13 Two Fermi spheres in adjacent
zones: a construction to show the role of phonon L_,
umklapp processes in electrical resistivity. qo

Bloch obtained an analytic result for the dominating “normal scattering”, with
p, o< T>/6° at very low temperatures. Bloch’s T° Law
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The temperature dependence of resistivity:
The electrical resistivity of most materials changes with temperature.

If the temperature T does not vary too much, a linear approximation is typically used:
p(T) = po[l + (T — To)]

Metals

In general, electrical resistivity of metals increases with temperature. Electron—phonon
interactions can play a key role. At high temperatures, the resistance of a metal increases
linearly with temperature. As the temperature of a metal is reduced, the temperature
dependence of resistivity follows a power law function of temperature.

Mathematically the temperature dependence of the resistivity p of a metal is given by the
Bloch—Grlineisen formula:

p(T) = p(0) + A (Biﬁ) [ 7 — 1)“”‘2 s

A is a constant that depends on the velocity of electrons at the Fermi surface, the Debye
radius and the number density of electrons in the metal. 0 is the Debye temperature as
obtained from resistivity measurements and matches very closely with the values of Debye
temperature obtained from specific heat measurements.

n is an integer that depends upon the nature of interaction.

1. n=5 implies that the resistance is due to scattering of electrons by phonons,
(simple metals).

2. n=3 implies that the resistance is due to s-d electron scattering, (as is the case for
transition metals).

3. n=2 implies that the resistance is due to electron—electron interaction.


https://en.wikipedia.org/wiki/Linear_approximation
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Phonon

" 4 MOTION IN MAGNETIC FIELDS

The free particle acceleration term is (hd /dt) 8k and the effect of collisions
(the friction) is represented by Adk/t , where 7 is the collision time.
The equation of motion is 1
F = —G(E‘FE—VXB) 3 (49)

ﬁ(i+%>5k=F . (48)

dt %F=—e(E+v><B);

m(% + %>v = —e<E +1vx B) . (50)

B is along the z axis

(CGS) m(% + %)o = (E + gvy) :
m<%+%>vy=—e(Ey——lcivx> : (51)

In a steady state in a static electric field the time derivatives are zero,

_ et _ _erT = o0
U = —= By — 0y, v, = —m Ey T @10, ; 0= B, (52)

w, = eB/mc is the cyclotron frequency.
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Hall Effect

The Hall field is the electric field developed across two faces of a conductor,
In the direction of j x B.

If current cannot flow out of the rod in the y direction we must have §\W =0
and W = 0, transverse electric field E,=—wiE, = - eBt E, ; (53)

mc
BZ

eBT
Rl o

E' E g jX’ EX
Hall coefficient. Ry ]—é X/

Hall resistance

eBTE. /mc 1
CGS Ry = — - ES——— Y 343
( ) " ne*tE B/m Iec (55)

assume all relaxation = for both thermal

(SI) Ry=—= . and electrical conduction are equal

pn =BRy = E,/ j, (55a)



(a) When the transverse field Ey

Section —E, | (Hall field) balances the Lorentz force
Pe?:,egn ;l;c:l a e j. | neE, =-ej,Blc
just starting u . . _

] g up i R, f Ei’?x -
—>F = -1/nec

Section
perpendicular |

to 2 axis;

drift velocity

in steady state. (©
Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular
cross-section is placed in a magnetic field B, as in (a). An electric field E, applied across the end
electrodes causes an electric current density j, to flow down the rod. The drift velocity of the
negatively-charged electrons immediately after the electric field is applied as shown in (b). The
deflection in the —y direction is caused by the magnetic field. Electrons accumulate on one face
of the rod and a positive ion excess is established on the opposite face until, as in (c), the trans-
verse electric field (Hall field) just cancels the Lorentz force due to the magnetic field.




See Ry, listed in Table 4

The problem of an apparent positive sign for the charge carriers arises
also for Be and As, as seen in the table. The anomaly of the sign was explained
by Peierls (1928). The motion of carriers of apparent positive sign, which
Heisenberg later called “holes,” cannot be explained by a free electron gas, but

by the energy band theory.

Al, In are in disagreements with the prediction,
with 1 positive hole, not 3 negative electrons



= sl Thermal conductivity of Metals
From eq. (36) for C,, in K, and € =1/2 mvg?

r \ﬁk% 7 PokeTr Cy = 1/22NKgT/T,
Kcl= 3. 2"UF'€= 3 (56)
muog m
2 2 2
§ _ 7TszT2Vr/3m _ 7:,; (keB ) - (57)
net/m See Table 5 for L
The Lorenz number L is defined as L = K/oT (58)

Ratio of Thermal to Electrical Conductivity

The Wiedemann-Franz law states that for metals at not too low temper-
atures the ratio of the thermal conductivity to the electrical conductivity is
directly proportional to the temperature, with the value of the constant of
proportionality independent of the particular metal.

k. \2
L= ﬁ (73) = 9272 X 1071 (erg/esu-deg)2

3
=945 X 1078 Watt-ohm/deg2 . (59)

This remarkable result involves neither n nor m. It does not involve 7,
If the relaxation times are identical for electrical and thermal processes.
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Home work, Chapter 6
m No.1

E NO.3
m NO.6



